FLONET FN20XX.1

Электромагнитные расходомеры-счетчики

Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Нижний Новгород (831)429-08-12, Новосибирск (383)227-86-73, Ростов-на-Дону (863)308-18-15, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40, Саратов (845)249-38-78, Уфа (347)229-48-12. Единый адрес: eis@nt-rt.ru Веб-сайт: elis.nt-rt.ru

HOBINHKA

- Размерный ряд DN 6...900
- Номинальное давление 0,6...4 МПа
- Температура измеряемой среды до 150 °C
- Компактное и раздельное исполнения
- Пылевлагозащита до ІР68
- Интерфейс —RS-485
- Гарантийный срок 2 года
- Внесены в Госреестр средств измерений под №52848-13

Сертификаты и разрешительные документы

- Свидетельство об утверждении типа средств измерений, регистрационный №52848-13
- Сертификат соответствия на расходомеры индукционные серии FLONET № POCC CZ.AE68.H12355

Назначение

Расходомеры-счетчики электромагнитные FLONET FN 20XX.1 предназначены для измерений объемного расхода и объёма воды или других электропроводящих жидкостей. Измерения могут осуществляться в 2-х направлениях потока.

Функции и возможности

- измерение значений текущего объемного расхода жидкости проходящей в обе стороны, с отображением направления движения на дисплее расходомера;
- измерение скорости потока и отображение в % от выбранного значения с максимальной скоростью до 10 м/с;
- работа в режиме дозирования;
- передача данных через интерфейс RS-485;
- выбор единицы измерения расхода жидкости: л/с, л/мин, л/ч, м³/с, м³/мин, м³/ч, галлоны/с, галлоны/м и т.д.;
- автоматическая очистка электродов;
- функция установки нуля;
- оповещение о пустой трубе для DN от 50 мм.

Технические характеристики

- Компактное и раздельное исполнения;
- Номинальное давление 0,6...4 МПа;
- Потери давления не более 0,1 бар;
- Материалы электродов нержавеющая сталь класс 1.4571 (17248), хастеллой С4, платина, тантал, титан;
- Динамический диапазон $Q_{_{MAKC}}/Q_{_{MUH}}-100;$

Таблица 1. Характеристика расходомеров по допускаемому максимальному давлению

DN	Максимально давление
610	1,6 МПа
1550	4,0 МПа
65200	1,6 МПа
250750	1,0 МПа
800900	0,6 МПа

Таблица 2. Температура измеряемой жидкости и материал футеровки

DN	Материал футеровки	Температура измеряемой среды, °C	
	Твердая резина	0+80	
15900	Мягкая резина	0+80	
	Специальная резина	0+90	
15250	Тефлон PTFE	-20+150	
300900	Этиленхлортрифторэтилен E-CTFE	-20+130	

- Тип присоединения к процессу фланцевое (ČSN EN 1092-1) (DN 6...900), бесфланцевое (сэндвич) (DN 6...200);
- Период измерительного цикла 1 с;
- Интерфейс RS-485 (USB для технологических целей);
- Количество реле / уставок 1/1;
- Минимальная электропроводимость измеряемой жидкости 20 мкСм/см, 5 мкСм/см в случаях особого применения;
- Заземление на фланцы, на кольца заземления, на заземляющий электрод (клемма);
- 16-разрядный цифровой 2-строчный ЖК-индикатор;
- Класс пылевлагозащиты IP67; (IP68 опция для раздельной версии);
- Климатическое исполнение -5...+55 °C;
- Питание:
 - ~230 B / 50...60 Гц;
 - =24 B:
- Межповерочный интервал 4 года;
- Гарантийный срок 2 года.

Характеристики выходных устройств и назначение

- измерение объемного расхода и указание направления потока жидкости 1 или 2 оптопары (30 В / 50 мА) в режиме импульсных выходов (0,001...1000000 л/имп, промежуток времени может быть задан в диапазоне от 10 до 2550 мс с шагом 10 мс);
- измерение объемного расхода и указание направления потока жидкости 1 или 2 оптопары (30 В / 50 мА)в режиме частотных выходов $(0...1 \, \kappa \Gamma_{\rm L})$;
- сигнализация о событиях и ошибках 1 или 2 оптопары (30 В / 50 мА);
- измерение объемного расхода изолированный токовый выход 0/4...20 мА;
- регулирование или аварийная сигнализация переключающий контакт =30 В × 0,3 А (срабатывание по программируемой уставке);
- работа в режиме дозирования входной диод оптопары 5 В, 10 мА и многофункциональная оптопара 30 В / 50 мА

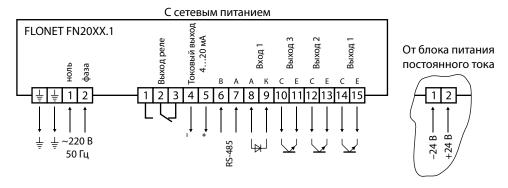
Метрологические характеристики

Пределы допускаемой относительной погрешности измерений объемного расхода жидкости:

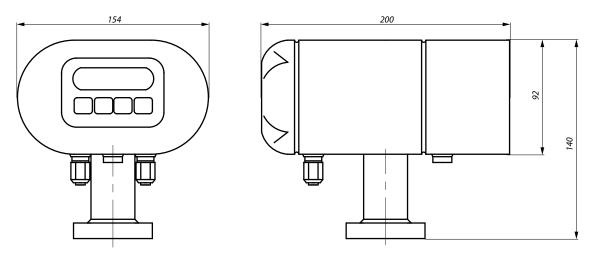
• Класс 1: ±0,2 от 10 до 100 % Q_{макс};

• Класс 2: ±0,5 от 5 до 100 % Q_{макс}.

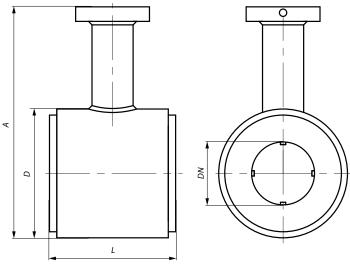
Измеряемый расход


Таблица 1

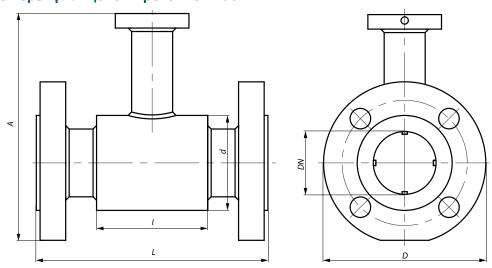
Tuomida 1	л	/c	м³/час		
DN, mm	Q _{min} *	Q _{max} *	Q _{min}	Q _{max}	
6	0,0028	0,28	0,01	1	
8	0,005	0,5	0,018	1,8	
10	0,008	0,8	0,028	2,8	
15	0,018	1,8	0,065	6,5	
20	0,0333	3,33	0,12	12	
25	0,05	5	0,18	18	
32	0,0833	8,33	0,3	30	
40	0,125	12,5	0,45	45	
50	0,2	20	0,72	72	
65	0,3333	33,33	1,2	120	


DN	л	/c	м³/час		
DN, mm	Q _{min} *	Q _{max} *	Q _{min}	Q _{max}	
80	0,5	50	1,8	180	
100	0,7777	77,77	2,8	280	
128	1,1944	119,44	4,3	430	
150	1,8055	180,55	6,5	650	
200	3,194	319,4	11,5	1150	
250	5	500	18	1800	
300	7	700	25,2	2520	
350	9,72	972	35	3500	
400	12,5	1250	45	4500	
500	20	2000	72	7200	
600	27,78	2778	100	10000	
700	38,89	3889	140	14000	
800	50	5000	180	18000	
900	63,89	6389	230	23000	

 $^{*-}Q_{\min}$ (минимальный измеряемый объемный расход) соответствует скорости потока 0,1 м/с, Q_{\max} (максимальный измеряемый объемный расход) соответствует скорости потока 10 м/с.


Схема электрическая подключений

Габаритные размеры электронного блока


Габаритные размеры бесфланцевой проточной части

Максимальное давлени PN, бар	DN	D	A*	L L	Масса**, кг
	6	76	145	100	-
16	6	76		100	
10	10	76		100	1
	20	62		74	
	25	72	158	104	2
40	32	82	168	104	2
40	40	92	179	104	2
	50	107	192	104	3
	65	127	212	104	3
	80	142	227	104	4
16	100	162	247	104	4
10	125	192	277	134	6
	150	218	303	134	8
	200	274	359	219	10

 $^{^*}$ — это размер без учета корпуса электронного блока (или корпуса выводов). ** — данные о массе датчика приблизительные.

Габаритные размеры фланцевой проточной части

Максимальное давлени PN, бар	DN	D	d	A*	L	1	Масса**, кг
	6	90			170		-
16	8	90			170		-
	10	90			170		_
	15	95	62	164	200	66	3
40	20	105	62	170	200	66	3
	25	115	72	180	200	96	3
	32	140	82	199	200	96	4
	40	150	92	209	200	96	4
	50	165	107	223	200	96	6

Максимальное давлени PN, бар	DN	D	d	A*	L	1.0	Масса**, кг
	65	185	127	244	200	96	9
	80	200	142	260	200	96	14
1.6	100	220	162	280	250	96	16
16	125	250	192	310	250	126	19
	150	285	218	340	300	126	25
	200	340	274	398	350	211	41
	250	395	370	480	450	211	54
	300	445	420	535	500	320	77
	350	505	480	584	550	320	92
10	400	565	530	642	600	320	116
	500	670	640	752	600	320	167
	600	780	760	870	600	320	315
	700	895	880	990	700	420	_
6	800	975	960	1100	800	420	427
6	900	1075	1040	1185	900	520	_

 $^{^*}$ — это размер без учета корпуса электронного блока (или корпуса выводов).

По вопросам продаж и поддержки обращайтесь:

Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Нижний Новгород (831)429-08-12, Новосибирск (383)227-86-73, Ростов-на-Дону (863)308-18-15, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40, Саратов (845)249-38-78, Уфа (347)229-48-12. Единый адрес: eis@nt-rt.ru Веб-сайт: elis.nt-rt.ru

^{** —} данные о массе датчика приблизительные.